skip to main content


Search for: All records

Creators/Authors contains: "Kong, Hyunjoon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    For patients who have difficulty in mechanical cleaning of dental appliances, a denture cleaner that can remove biofilm with dense extracellular polymeric substances is needed. The purpose of this study is to evaluate the efficacy of diatom complex with active micro-locomotion for removing biofilms from 3D printed dentures. The diatom complex, which is made by doping MnO2nanosheets on diatom biosilica, is mixed with H2O2to generate fine air bubbles continuously. Denture base resin specimens were 3D printed in a roof shape, andPseudomonas aeruginosa(107 CFU/mL) was cultured on those for biofilm formation. Cleaning solutions of phosphate-buffered saline (negative control, NC), 3% H2O2with peracetic acid (positive control, PC), denture cleanser tablet (DCT), 3% H2O2with 2 mg/mL diatom complex M (Melosira, DM), 3% H2O2with 2 mg/mL diatom complex A (Aulacoseira, DA), and DCT with 2 mg/mL DM were prepared and applied. To assess the efficacy of biofilm removal quantitatively, absorbance after cleaning was measured. To evaluate the stability of long-term use, surface roughness, ΔE, surface micro-hardness, and flexural strength of the 3D printed dentures were measured before and after cleaning. Cytotoxicity was evaluated using Cell Counting Kit-8. All statistical analyses were conducted using SPSS for Windows with one-way ANOVA, followed by Scheffe’s test as a post hoc (p < 0.05). The group treated with 3% H2O2with DA demonstrated the lowest absorbance value, followed by the groups treated with 3% H2O2with DM, PC, DCT, DCT + DM, and finally NC. As a result of Scheffe’s test to evaluate the significance of difference between the mean values of each group, statistically significant differences were shown in all groups based on the NC group. The DA and DM groups showed the largest mean difference though there was no significant difference between the two groups. Regarding the evaluation of physical and mechanical properties of the denture base resin, no statistically significant differences were observed before and after cleaning. In the cytotoxicity test, the relative cell count was over 70%, reflecting an absence of cytotoxicity. The diatom complex utilizing active micro-locomotion has effective biofilm removal ability and has a minimal effect in physical and mechanical properties of the substrate with no cytotoxicity.

     
    more » « less
  2. Free, publicly-accessible full text available December 26, 2024
  3. Abstract Tissue-engineered living machines is an emerging discipline that employs complex interactions between living cells and engineered scaffolds to self-assemble biohybrid systems for diverse scientific research and technological applications. Here, we report an adaptive, autonomous biohybrid pumping machine with flow loop feedback powered by engineered living muscles. The tissue is made from skeletal muscle cells (C2C12) and collagen I/Matrigel matrix, which self-assembles into a ring that compresses a soft hydrogel tube connected at both ends to a rigid fluidic platform. The muscle ring contracts in a repetitive fashion autonomously squeezing the tube, resulting in an impedance pump. The resulting flow is circulated back to the muscle ring forming a feedback loop, which allows the pump to respond to the cues received from the flow it generates and adaptively manage its pumping performances based on the feedback. The developed biohybrid pumping system may have broad utility and impact in health, medicine and bioengineering. 
    more » « less
  4. Collagen serves as an essential structural material in the human body. Despite the complex mechanical conditions surrounding the collagen hydrogels, previous studies mostly focus on analyzing the mechanical behavior under dynamically varying compressive or shear loads, but the tensile properties at the quasistatic time scale are relatively less studied. This work aims to investigate the quasistatic tensile behavior of reconstituted collagen hydrogels under uniaxial tensile stresses. The evolution of the collagen fiber network structures with straining is visually observed using the confocal microscope equipped with the tensile strain actuator. While the unfolding of the initially undulated fibers accommodates the early‐stage strains, the deformation mechanism continuously changes to the stretching of fibers through the network alignment to the tensile direction. This transition commences with the buckling of a fiber lying transverse to the loading direction, which otherwise locks the rotation of adjacent fibers.

     
    more » « less
  5. Abstract

    The secretome from mesenchymal stem cells (MSCs) have recently gained attention for new therapeutics. However, clinical application requires in vitro cell manufacturing to attain enough cells. Unfortunately, this process often drives MSCs into a senescent state that drastically changes cellular secretion activities. Antioxidants are used to reverse and prevent the propagation of senescence; however, their activity is short‐lived. Polymer‐stabilized crystallization of antioxidants has been shown to improve bioactivity, but the broad crystal size distribution (CSD) significantly increases the efficacy variation. Efforts are made to crystalize drugs in microdroplets to narrow the CSD, but the fraction of drops containing at least one crystal can be as low as 20%. To this end, this study demonstrates that in‐drop thermal cycling of hyaluronic acid‐modified antioxidant crystals, named microcrystal assembly for senescence control (MASC), can drive the fraction of microdrops containing crystals to >86% while achieving significantly narrower CSDs (13 ± 3 µm) than in bulk (35 ± 11 µm). Therefore, this approach considerably improves the practicality of CSD‐control in drops. In addition to exhibiting uniform release, MASC made with antioxidizing N‐acetylcysteine extends the release time by 40%. MASC further improves the restoration of reactive oxygen species homeostasis in MSCs, thus minimizing cellular senescence and preserving desired secretion activities. It is proposed that MASC is broadly useful to controlling senescence of a wide array of therapeutic cells during biomanufacturing.

     
    more » « less